Facilitating Model-Based Design and
Evaluation for Sustainability

Natasha Jarus, Sahra Sedigh Sarvestani, and Ali Hurson
Department of Electrical and Computer Engineering
Missouri University of Science and Technology
Rolla, USA 65409
Email: {jarus, sedighs, hurson} @mst.edu

Abstract—Relating various models of a system is an essential
part of model transformation, model composition, and other
metamodeling tasks. The objective of this doctoral research is
to create a provably correct approach to this problem.

I. INTRODUCTION

Design and rigorous evaluation of a complex, sustainable
system requires the creation of models to capture various
aspects of the system’s behavior. For instance, a sustainable
water distribution network must have the capacity necessary to
service all its customers and it must conserve water and power
throughout the distribution process. It should be dependable
in the face of pipe ruptures and other component failures and
be secure from both physical and cyber attacks. All of this
should be accomplished with lean physical infrastructure so
that excess capacity is not wasted. Model-based design and
evaluation is an effective approach to achieving these goals if
all models used are accurate and consistent. In other words,
the constraints imposed by one model and modeling formalism
and the assumptions underlying them must not contradict
those of any other. As a simple example, a reliability model
that assumes two components are placed in parallel is not
an accurate representation of a system topology where those
components are placed in series.

The intended contribution of the doctoral research described
in this paper is to create a broadly applicable and provably
correct model transformation method. The first goal of this
approach is to be applicable to a variety of complex systems
and modeling formalisms and to be capable of complex
transformation operations. For example, we seek to relate a
continuous—time system dynamics model to a discrete—time
control algorithm model, or a model of a system’s resilience to
a model of the system’s topology. Our second goal is for every
transformation to be provably correct. As the system design
evolves, we should be able to propagate new information
across all models of a system. To our knowledge, no existing
approach addresses all of these challenges.

We postulate that sound approximation of semantics is key
to provably correct model transformation. The semantics of a
model arise from two sources: the semantics of the modeling
formalism (e.g., discrete or continuous time, independence of
state variables) and the semantics of the system that the model

978-1-5386-7466-6/18/$31.00 (© 2018 IEEE

describes (e.g., interdependencies between components). Each
model of a system serves as an approximation of that system’s
behavior; the extent of the approximation is determined by
how well the semantics of the corresponding modeling for-
malism align with the semantics of the system.

This understanding of model semantics can be applied to
other challenges encountered in developing or analyzing sus-
tainable systems. A salient challenge in complex sustainable
systems is model composition, which is closely related to
model transformation. System—level models can be generated
by modeling each component individually, then composing
the models guided by the system’s physical and functional
topology. Composition of heterogeneous models, where the
models can differ in formalism, is especially challenging,
as it has to enable interoperation of the models’ respective
evaluation methods while correctly interpreting their respective
semantics.

II. RESEARCH CONTRIBUTIONS

We anticipate the following contributions at the conclusion
of this research:

1) A theory of sound approximation of system and model

semantics
2) A method for transforming system models
3) A method for heterogeneous model composition and
evaluation

In previous work [1], we have outlined a model transfor-
mation approach based on abstract interpretation [2]. Initially
developed for static analysis of computer programs, abstract
interpretation is a theory of sound approximation of program
semantics. The core of our proposed transformation is based
on defining connections between each modeling formalism and
a domain that captures the properties of the system. Each con-
nection has certain attributes that allow us to demonstrate that
it constitutes a sound approximation of the system semantics.
These connections can then be used to transform a model from
one formalism to another, as well as to propagate changes
across models in various formalisms. For example, from a
reliability model we can deduce part of a system’s semantics,
including independence or interdependence of specific com-
ponents. Based on these semantics, we can construct a set of
system topology models whose semantics are compatible with
those deduced from the reliability model.

Model composition can be facilitated by interpreting the
outputs from one model in terms of another model’s semantics.
Once reinterpreted, these outputs can be used as inputs to
this second model. This process can be automated to allow
for co-simulation. It may also be possible to perform this
interpretation at a higher level of abstraction, creating hybrid
model formalisms.

III. ABSTRACT INTERPRETATION OF MODELS

Transforming models between formalisms is generally not
a one—to—one operation. For instance, when converting a
topology model into a reliability model, the topology model
encodes no information about component reliability. Therefore
each topology model is consistent with multiple reliability
models. Furthermore, defining model transformation directly
between two formalisms is not scalable: for n formalisms, we
have to define O(n?) transformations.

We address both of these issues by formalising model
transformation in terms of abstract interpretation. Rather than
relating a model of one formalism to a model of another, we
relate sets of models. This allows the formalism to capture the
approximating nature of system modeling; since each model
abstracts some part of the system’s semantics, it is necessarily
the case that every model is consistent with several different
systems. Thus, we say that a given topology model describes
any system with that topology, regardless of the reliability of
that system’s components.

To make the approach scalable, we introduce a system
properties domain that encodes system properties such as com-
ponent reliability and interdependencies. Model transformation
is split into concretization and abstraction steps.

Concretization maps a model to the properties that hold for
the systems described by that model; i.e., it generates a set of
systems described by a given model.

To complete the transformation, a set of models is abstracted
from the given properties, producing a set of models consistent
with the initial model. Each formalism requires us to define
only abstraction and concretization functions, meaning that for
n modeling formalisms we define O(n) operations.

Figure 1 illustrates this transformation for modeling for-
malisms Model; and Model,. First, a model m; €
Model; is lifted to the set {m;}. Concretization takes a set
of models (in this case, {m1}) and produces the properties
that hold for all those models. These properties are then
abstracted to a set of models of the Model, formalism.
All the models in this set are consistent with the initial
model; the system designer must then select the correct model
from this set by introducing new information not present in
the existing system properties. For example, transforming a
parallel topology model into a set of reliability models will
produce models of the reliability of a parallel system, but the
designer must specify the reliability of each component to
select a single reliability model from the results.

Dividing transformation into abstraction and concretization
also offers a means to formalize the soundness of transforma-
tions. Let a be the abstraction operator for a given modeling

Modely Model,
Lifting | life(x) = {z} I Selection
P(Model;) P(Modely)
ConcretizatN /Ab;straction
Y a

Properties

Fig. 1. Transforming Sets of Models

domain Model and ~ the associated concretization operator.
Furthermore, we will define a specificity order on all our
domains. For P(Model), this is the subset (C) relationship:
fewer possible models in a set means more information about
the system in that set. We define Properties such that it has
an order operator = which behaves in a similar fashion.

By requiring (Properties, a, vy, P(Model)) to be a Ga-
lois connection, i.e., requiring the following properties for
and v, we can ensure that these transformations preserve the
soundness of the models on which they operate.

PC (yoa)(P), VP € Properties (D)
(o) (M) C M, VM C P(Model) 2)

Equation (1) informs us that if we start with some properties
of a system, abstract a set of models from them, then con-
cretize system properties from those models, we get properties
that are at worst less specific than the initial ones. This allows
abstraction to discard properties not relevant to the semantics
of the modeling formalism, but forbids it from producing
contradictions. Equation (2) requires the properties domain to
fully represent each modeling formalism. (1) and (2) combine
to make « and 7 sound with respect to system and model
semantics.

IV. CURRENT STATUS

We are currently creating formalisms for system relia-
bility and topology, which will demonstrate the constraints
reliability places on topology and vice versa. The bulk of
our body of research is on quantitative modeling of large—
scale networked systems, with emphasis on cyber—physical
critical infrastructure such as smart grids and intelligent water
distribution networks. One objective of our work on model
transformation is to increase the impact and applicability
of these quantitative models by enabling transformation of
models from one application domain to another, e.g., power to
water, or from one system attribute to another, e.g., resilience
to survivability. This will considerably accelerate the adoption
of sustainable infrastructures by facilitating their assurance.

REFERENCES

[1] N. Jarus, S. Sedigh Sarvestani, and A. R. Hurson, “Models, metamodels,
and model transformation for cyber—physical systems,” in 7 Interna-
tional Green and Sustainable Computing Conference, pp. 1-8, Nov. 2016.

[2] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in 4" ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pp. 238-252, ACM, 1977.

